Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 62
1.
J Hazard Mater ; 471: 134363, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38663291

Degradation of organics in high-salinity wastewater is beneficial to meeting the requirement of zero liquid discharge for coking wastewater treatment. Creating efficient and stable performance catalysts for high-salinity wastewater treatment is vital in catalytic ozonation process. Compared with ozonation alone, Mn and Ce co-doped γ-Al2O3 could remarkably enhance activities of catalytic ozonation for chemical oxygen demand (COD) removal (38.9%) of brine derived from a two-stage reverse osmosis treatment. Experimental and theoretical calculation results indicate that introducing Mn could increase the active points of catalyst surface, and introducing Ce could optimize d-band electronic structures and promote the electron transport capacity, enhancing HO• bound to the catalyst surface ([HO•]ads) generation. [HO•]ads plays key roles for degrading the intermediates and transfer them into low molecular weight organics, and further decrease COD, molecular weights and number of organics in reverse osmosis concentrate. Under the same reaction conditions, the presence of Mn/γ-Al2O3 catalyst can reduce ΔO3/ΔCOD by at least 37.6% compared to ozonation alone. Furthermore, Mn-Ce/γ-Al2O3 catalytic ozonation can reduce the ΔO3/ΔCOD from 2.6 of Mn/γ-Al2O3 catalytic ozonation to 0.9 in the case of achieving similar COD removal. Catalytic ozonation has the potential to treat reverse osmosis concentrate derived from bio-treated coking wastewater reclamation.

2.
Genome Biol ; 25(1): 96, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622747

We present a non-parametric statistical method called TDEseq that takes full advantage of smoothing splines basis functions to account for the dependence of multiple time points in scRNA-seq studies, and uses hierarchical structure linear additive mixed models to model the correlated cells within an individual. As a result, TDEseq demonstrates powerful performance in identifying four potential temporal expression patterns within a specific cell type. Extensive simulation studies and the analysis of four published scRNA-seq datasets show that TDEseq can produce well-calibrated p-values and up to 20% power gain over the existing methods for detecting temporal gene expression patterns.


Gene Expression Profiling , Single-Cell Analysis , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Gene Expression Profiling/methods , Computer Simulation , Gene Expression
3.
Skin Res Technol ; 30(4): e13649, 2024 Apr.
Article En | MEDLINE | ID: mdl-38533753

OBJECTIVES: To establish accurate and objective dermoscopic diagnostic criteria and grading standards for males and females with androgenetic alopecia (AGA). METHODS: Twenty patients each with AGA, diffuse alopecia areata, telogen effluvium, and healthy controls were enrolled in the current study. In addition, 60 patients with grades F1/V1, F2/V2, and F3/V3 AGA (20 cases each) were enrolled. The patients underwent dermoscopic examinations. The sensitivity and specificity of the diagnostic criteria were based on the 60 AGA and 60 non-AGA. In addition, 150 patients diagnosed with AGA clinically and by dermoscopy were enrolled to calculate the accuracy of the grading criteria. RESULTS: The diagnostic criteria included primary, secondary, and exclusion criteria. The grading criteria included three indices, which divided the severity of AGA into grades 1, 2, and 3. The sensitivity and specificity of the diagnostic criteria were 98.3% and 96.7% respectively. The accuracy of grade 1, 2, and 3 dermoscopic grading criteria were 96%, 92%, and 100% respectively, with a total accuracy of 96%. LIMITATIONS: To test the diagnostic and grading criteria, more patients need to be collected. CONCLUSIONS: The dermoscopic diagnostic and grading criteria are objective with good accuracy, which could provide a reasonable basis for the early diagnosis, grading treatment, and improved prognosis for AGA.


Alopecia Areata , Dermoscopy , Male , Female , Humans , Alopecia/therapy , Alopecia Areata/diagnosis
4.
Ann Rheum Dis ; 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38325908

OBJECTIVES: Single-cell and spatial transcriptomics analysis of human knee articular cartilage tissue to present a comprehensive transcriptome landscape and osteoarthritis (OA)-critical cell populations. METHODS: Single-cell RNA sequencing and spatially resolved transcriptomic technology have been applied to characterise the cellular heterogeneity of human knee articular cartilage which were collected from 8 OA donors, and 3 non-OA control donors, and a total of 19 samples. The novel chondrocyte population and marker genes of interest were validated by immunohistochemistry staining, quantitative real-time PCR, etc. The OA-critical cell populations were validated through integrative analyses of publicly available bulk RNA sequencing data and large-scale genome-wide association studies. RESULTS: We identified 33 cell population-specific marker genes that define 11 chondrocyte populations, including 9 known populations and 2 new populations, that is, pre-inflammatory chondrocyte population (preInfC) and inflammatory chondrocyte population (InfC). The novel findings that make this an important addition to the literature include: (1) the novel InfC activates the mediator MIF-CD74; (2) the prehypertrophic chondrocyte (preHTC) and hypertrophic chondrocyte (HTC) are potentially OA-critical cell populations; (3) most OA-associated differentially expressed genes reside in the articular surface and superficial zone; (4) the prefibrocartilage chondrocyte (preFC) population is a major contributor to the stratification of patients with OA, resulting in both an inflammatory-related subtype and a non-inflammatory-related subtype. CONCLUSIONS: Our results highlight InfC, preHTC, preFC and HTC as potential cell populations to target for therapy. Also, we conclude that profiling of those cell populations in patients might be used to stratify patient populations for defining cohorts for clinical trials and precision medicine.

5.
J Control Release ; 367: 470-485, 2024 Mar.
Article En | MEDLINE | ID: mdl-38290565

Despite the fact that immunotherapy has significantly improved the prognosis of melanoma patients, the non-response rate of monoimmunotherapy is considerably high due to insufficient tumor immunogenicity. Therefore, it is necessary to develop alternative methods of combination therapy with enhanced antitumor efficiency and less systemic toxicity. In this study, we reported a cancer cell membrane-coated zeolitic imidazole framework-8 (ZIF-8) encapsulating pyroptosis-inducer oxaliplatin (OXA) and immunomodulator imiquimod (R837) for chemoimmunotherapy. With the assistance of DNA methyltransferase inhibitor decitabine (DCT), upregulated Gasdermin E (GSDME) was cleaved by OXA-activated caspase-3, further inducing tumor cell pyroptosis, then localized antitumor immunity was enhanced by immune adjuvant R837, followed by triggering systemic antitumor immune responses. These results provided a proof-of-concept for the use of cell membrane-coated biomimetic nanoparticles as a promising drug carrier of combination therapy and a potential insight for pyroptosis-based melanoma chemo-immunotherapy.


Melanoma , Nanoparticles , Neoplasms , Humans , Melanoma/drug therapy , Biomimetics , Imiquimod , Pyroptosis , Adjuvants, Immunologic , Immunotherapy , Oxaliplatin
6.
Brief Funct Genomics ; 23(2): 95-109, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-37022699

Differential expression (DE) analysis is a necessary step in the analysis of single-cell RNA sequencing (scRNA-seq) and spatially resolved transcriptomics (SRT) data. Unlike traditional bulk RNA-seq, DE analysis for scRNA-seq or SRT data has unique characteristics that may contribute to the difficulty of detecting DE genes. However, the plethora of DE tools that work with various assumptions makes it difficult to choose an appropriate one. Furthermore, a comprehensive review on detecting DE genes for scRNA-seq data or SRT data from multi-condition, multi-sample experimental designs is lacking. To bridge such a gap, here, we first focus on the challenges of DE detection, then highlight potential opportunities that facilitate further progress in scRNA-seq or SRT analysis, and finally provide insights and guidance in selecting appropriate DE tools or developing new computational DE methods.


Single-Cell Analysis , Single-Cell Gene Expression Analysis , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Gene Expression Profiling/methods , Transcriptome/genetics
7.
Waste Manag ; 174: 487-495, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38128367

In this study, dredged sediment from Baiyang Lake was used as raw material to prepare DSB at a pyrolysis temperature of 600 °C and in an anoxic pyrolysis atmosphere. The adsorption and removal performance of tetracycline in water of DSB were investigated using fulvic acid (FA) as the activator. The biochar materials were first characterized (SEM, BET, XRD, FTIR, and XPS), and the elemental composition and surface functional groups of F-DSB were investigated. The maximum adsorption capacity of F-DSB, according to the Langmuir model, was 72.3 mg/g. Results demonstrated that F-DSB exhibited good adsorption performance. In conclusion, FA is a potential green modifier that can be used to improve the adsorption properties of DSB. This research will be useful in improving our understanding of the possible adsorption mechanism and process optimization of modified DSB. This work offers a novel approach to the resource utilization of dredged sediment.


Benzopyrans , Tetracycline , Water Pollutants, Chemical , Temperature , Anti-Bacterial Agents , Charcoal , Adsorption , Water Pollutants, Chemical/analysis , Kinetics
8.
J Environ Sci (China) ; 138: 46-61, 2024 Apr.
Article En | MEDLINE | ID: mdl-38135412

It is important to investigate whether combining two modification strategies has a synergistic effect on the activity of photocatalysts. In this manuscript, Fe-doped BiOBr/Bi2WO6 heterojunctions were synthesized by a one-pot solvothermal method, and excellent photocatalytic performance was obtained for the degradation of tetracycline hydrochloride (TCH) in water without the addition of surfactant. Combining experiments and characterization, the synergistic effect between Fe ion doping and the BiOBr/Bi2WO6 heterojunction was elucidated. The Fe/BiOBr/Bi2WO6 composite photocatalyst had a beneficial void structure, enhanced visible light response, and could inhibit the recombination of photogenerated support well, which improved the photocatalytic activity. The presented experiments demonstrate that Fe/BiOBr/Bi2WO6 removes 97% of TCH from aqueous solution, while pure BiOBr and Bi2WO6 only remove 56% and 65% of TCH, respectively. Finally, the separation and transfer mechanisms of photoexcited carriers were determined in conjunction with the experimental results. This study provides a new direction for the design of efficient photocatalysts through the use of a dual co-modification strategy.


Pulmonary Surfactants , Tetracycline , Light , Surface-Active Agents , Water
9.
Biology (Basel) ; 12(11)2023 Nov 17.
Article En | MEDLINE | ID: mdl-37998043

Amur tigers are at the top of the food chain and play an important role in maintaining the health of forest ecosystems. Scientific and detailed assessment of the habitat quality of Amur tigers in China is the key to maintaining the forest ecosystem and also addressing the urgent need to protect and restore the wild population of Amur tigers in China. This study used the random forest method to predict the potential habitat of Amur tigers in Heilongjiang and Jilin provinces using animal occurrence sites and a variety of environmental variables. Random forests are a combination of tree predictors such that each tree depends on the values of a random vector sampled independently and with the same distribution for all trees in the forest. The generalization error for forests converges to a limit as the number of trees in the forest becomes large. The generalization error of a forest of tree classifiers depends on the strength of the individual trees in the forest and the correlation between them. The results showed that the AUC value of the test set was 0.955. The true skill statistic (TSS) value is 0.5924, indicating that the model had good prediction accuracy. Using the optimal threshold determined by the Youden index as the cutoff value, we found that the suitable habitat for Amur tigers in the field was approximately 107,600 km2, accounting for 16.3% of the total study areas. It was mainly distributed in the Sino-Russian border areas in the south of the Laoyeling Mountains at the junction of Jilin and Heilongjiang provinces, the Sino-Russian border areas of Hulin-Raohe in the eastern part of the Wanda Mountains, and the Lesser Khingan Mountain forest region. The habitat suitability of the Greater Khingan Mountain and the plain areas connecting Harbin and Changchun was relatively low. Prey potential richness was the most critical factor driving the distribution of Amur tigers. Compared with their prey, the potential habitats for Amur tigers in Heilongjiang and Jilin provinces were small in total areas, sporadically distributed, and had low continuity and a lack of connectivity between patches. This indicates that some factors may restrict the diffusion of the Amur tiger, whereas the diffusion of ungulates is less restricted. The Amur tigers in this area face a serious threat of habitat fragmentation, suggesting that habitat protection, restoration, and ecological corridor construction should be strengthened to increase population dispersal and exchange. We provide a reference for future population conservation, habitat restoration, construction of ecological migration corridors, and population exchange of Amur tigers.

10.
Int J Mol Sci ; 24(22)2023 Nov 07.
Article En | MEDLINE | ID: mdl-38003226

OBJECTIVE: Kashin-Beck disease (KBD) is a kind of endemic and chronic osteochondropathy in China. This study aims to explore the functional relevance and potential mechanism of Wnt-inducible signaling pathway protein 1 (WISP1) in the pathogenesis of KBD. DESIGN: KBD and control cartilage specimens were collected for tissue section observation and primary chondrocyte culture. Firstly, the morphological and histopathological observations were made under a light and electron microscope. Then, the expression levels of WISP1 as well as molecular markers related to the autophagy pathway and extracellular matrix (ECM) synthesis were detected in KBD and control chondrocytes by qRT-PCR, Western blot, and immunohistochemistry. Furthermore, the lentiviral transfection technique was applied to make a WISP1 knockdown cell model based on KBD chondrocytes. In vitro intervention experiments were conducted on the C28/I2 human chondrocyte cell line using human recombinant WISP1 (rWISP1). RESULTS: The results showed that the autolysosome appeared in the KBD chondrocytes. The expression of WISP1 was significantly higher in KBD chondrocytes. Additionally, T-2 toxin, a risk factor for KBD onset, could up-regulate the expression of WISP1 in C28/I2. The autophagy markers ATG4C and LC3II were upregulated after the low-concentration treatment of T-2 toxin and downregulated after the high-concentration treatment. After knocking down WISP1 expression in KBD chondrocytes, MAP1LC3B decreased while ATG4C and COL2A1 increased. Moreover, the rWISP1 protein treatment in C28/I2 chondrocytes could upregulate the expression of ATG4C and LC3II at the beginning and downregulate them then. CONCLUSIONS: Our study suggested that WISP1 might play a role in the pathogenesis of KBD through autophagy.


Cartilage, Articular , Kashin-Beck Disease , T-2 Toxin , Humans , Kashin-Beck Disease/genetics , Kashin-Beck Disease/metabolism , Kashin-Beck Disease/pathology , T-2 Toxin/metabolism , Cell Line , Wnt Signaling Pathway , Autophagy , Chondrocytes/metabolism , Cartilage, Articular/metabolism
11.
Sci Total Environ ; 905: 167126, 2023 Dec 20.
Article En | MEDLINE | ID: mdl-37739087

Electron transfer efficiency is a key factor that determined the removal of environmental pollution through biodegradation. Electron shuttles exogenously addition is one of the measures to improve the electron transfer efficiency. In this study, the sediment was pyrolyzed at different temperature to investigate its properties of mediating electron transfer and removing of rhodamine B (RhB) in microbial electrochemical systems (MESs). Sediments pyrolyzed at 300 °C (PS300) and 600 °C (PS600) have promoted electron transfer which led to 16 % enhancement of power generation while the result is reversed at 900 °C (PS900). Although power output of PS300 and PS600 are similar, the removal efficiency of RhB is not consistent, which may be caused by the biofilm structure difference. Microbial community analysis revealed that the abundance of EAB and toxicity-degrading bacteria (TDB) in PS600 was 6 % higher than that in PS300. The differentiation of microbial community also affected the metabolic pathway, the amino synthesis and tricarboxylic acid cycle were primarily upregulated with PS600 addition, which enhanced the intracellular metabolism. However, a more active cellular anabolism occurred with PS300, which may have been triggered by RhB toxicity. This study showed that pyrolytic sediment exhibits an excellent ability to mediate electron transport and promote pollutant removal at 600 °C, which provides a techno-economically feasible scenario for the utilization of low-carbon-containing solid wastes.


Bacteria , Electrons , Electron Transport , Bacteria/metabolism , Biodegradation, Environmental
12.
Biology (Basel) ; 12(8)2023 Aug 11.
Article En | MEDLINE | ID: mdl-37627006

The change in habitat pattern is one of the key factors affecting the survival of the moose population. The study of the habitat landscape pattern is the key to protecting the Chinese cold-temperate forest moose population and monitoring the global distribution of moose. Through the ecological risk assessment of the moose habitat landscape pattern in a cold-temperate forest, we hope to assess the strength of habitat resistance under stress factors. This study provides a theoretical basis for the protection of the moose population in the cold-temperate forest in China and the establishment of the cold-temperate forest national park. In the study, the MaxEnt model, landscape index calculation and ecological risk assessment model construction were used to analyze the field survey and infrared camera monitoring data from April 2014 to January 2023. The habitat suitability layer of the moose population in the Nanwenghe National Nature Reserve of the Great Khingan Mountains was calculated, and the range of the moose habitat was divided based on the logical threshold of the model. The landscape pattern index of the moose habitat was calculated by Fragstats software and a landscape ecological risk assessment model was established to analyze the landscape pattern and ecological risk dynamic changes of the moose habitat in 2015 and 2020. The results showed that under the premise of global warming, the habitat landscape contagion index decreased by 4.53 and the split index increased by 4.86 from 2015 to 2020. In terms of ecological risk: the area of low ecological risk areas increased by 0.88%; the area of medium ecological risk areas decreased by 1.11%; and the area of high ecological risk areas increased by 0.23%. The fragmentation risk of the landscape pattern of the moose habitat tends to increase, the preferred patch type is dispersed, the degree of aggregation is low, and the risk of patch type transformation increases. The middle and high ecological risk areas are mainly concentrated in the river area and its nearby forests, showing a fine and scattered distribution. Under the interference of global warming and human activities, the fragmentation trend of the moose habitat in the study area is increasing, and the habitat quality is declining, which is likely to cause moose population migration. For this reason, the author believes that the whole cold temperate forest is likely to face the risk of increasing the transformation trend of dominant patch types in the cold-temperate coniferous forest region mainly caused by global warming, resulting in an increase in the risk of habitat fragmentation. While the distribution range of moose is reduced, it has a significant impact on the diversity and ecological integrity of the whole cold-temperate forest ecosystem. This study provides theoretical references for further research on the impact of climate warming on global species distribution and related studies. It is also helpful for humans to strengthen their protection awareness of forest and river areas and formulate reasonable protection and sustainable development planning of cold-temperate forests. Finally, it provides theoretical references for effective monitoring and protection of cold-temperate forests and moose population dynamics.

13.
Ecotoxicol Environ Saf ; 262: 115133, 2023 Jun 14.
Article En | MEDLINE | ID: mdl-37327524

Graphitic carbon nitride (g-C3N4) has received much attention due to its unique characteristics of stable physicochemical features, facile preparation, and inexpensive cost. However, the bulk g-C3N4 has a weak capacity for pollutant degradation and needs to be modified for real application. Therefore, extensive research has been done on g-C3N4, and the discovery of the novel zero-dimensional nanomaterials known as carbon quantum dots (CQDs) provided it with a unique modification option. In this review, the development for the removal of organic pollutants by g-C3N4/CQDs was discussed. Firstly, the preparation of g-C3N4/CQDs were introduced. Then, the application and the degradation mechanism of g-C3N4/CQDs were briefly described. And the discussion of the influencing factors on g-C3N4/CQDs' ability to degrade organic pollutants came in third. Finally, the conclusions of photocatalytic degradation of organic pollutants by g-C3N4/CQDs and future perspectives followed. This review will strengthen the understanding of the photocatalytic degradation of real organic wastewater by g-C3N4/CQDs, including their preparation, application, mechanism, and influencing factors.

14.
BMC Cancer ; 23(1): 292, 2023 Mar 31.
Article En | MEDLINE | ID: mdl-37004045

BACKGROUND: Skin cutaneous melanoma (SKCM) is an extremely malignant tumor and accounts for the majority of skin cancer deaths. Aspartate beta-hydroxylase domain containing 1 (ASPHD1) may participate in cancer progression through controlling α-ketoglutarate-dependent dioxygenases. However, its role in skin cutaneous melanoma (SKCM) has not been well studied. METHODS: The gene expression data of ASPDH1 and differentially expressed genes (DEGs) from TCGA and GTEx were evaluated, and verified via the GEO database. Then, we performed GO/KEGG, GSEA, PPI network analysis to analyze the functional implications of the DEGs related to ASPHD1. Then, the association between the ASPHD1 expression and clinical parameters was investigated by Cox regression analysis. Subsequently, the survival time of SKCM patients was evaluated by plotting Kaplan-Meier curves. Moreover, we investigated the correlation between the ASPHD1 expression and lymphocytic infiltration by using the data from TISIDB and TIMER 2.0. Next, we explored the association between ASPHD1 expression and drug sensitivity. Finally, we validate the expression differences by analyzing the results of qPCR, Western blot from human normal epidermal melanocytes and melanoma cells, and immunohistochemistry (IHC) from non-tumor skin as well as melanoma tissues. RESULTS: The ASPHD1 expression level was significantly upregulated in several cancers, including SKCM especially SKCM-metastasis tissues, and patients with an increased ASPHD1 expression had longer overall survival time than low expression ones. The functional enrichment analysis of ASPHD1-related DEGs showed an association with cell development regulation and tumorigenic pathways. Furthermore, the increased ASPHD1 expression level was associated with the level of immunostimulors, immunoinhibitors, chemokines, and TILs, such as CD4+, CD8+ T cell, mast cell, Th2 cell, and dendritic cell. More interesting, we found that ASPHD1 expression was tightly associated with CTLA4 and CD276 which are immune checkpoint markers. Moreover, the upregulated expression of ASPHD1 exhibited higher IC50 values for 24 chemotherapy drugs, including doxorubicin, and masitinib. Finally, the differential expression of ASPHD1 in SKCM was validated by the results of qPCR, Western blot, and IHC. CONCLUSION: The expression of ASPHD1 in SKCM patients is closely related to patient survival. ASPHD1 may participate in the regulation of tumor immune microenvironment. Additionally, it may serve as a prognostic biomarker for SKCM and future in-depth studies are necessary to explore its value.


Melanoma , Skin Neoplasms , Humans , Melanoma/genetics , Skin Neoplasms/genetics , Aspartic Acid , Prognosis , Mixed Function Oxygenases , Transcription Factors , Tumor Microenvironment , B7 Antigens , Melanoma, Cutaneous Malignant
15.
Sci Total Environ ; 874: 162508, 2023 May 20.
Article En | MEDLINE | ID: mdl-36863582

Sediment is the internal and external source of water environment pollution, so sediment remediation is the premise of water body purification. Sediment microbial fuel cell (SMFC) can remove the organic pollutants in sediment by electroactive microorganisms, compete with methanogens for electrons, and realize resource recycling, methane emission inhibiting and energy recovering. Due to these characteristics, SMFC have attracted wide attention for sediment remediation. In this paper, we comprehensively summarized the recent advances of SMFC in the following areas: (1) The advantages and disadvantages of current applied sediment remediation technologies; (2) The basic principles and influencing factors of SMFC; (3) The application of SMFC for pollutant removal, phosphorus transformation and remote monitoring and power supply; (4) Enhancement strategies for SMFC in sediments remediation such as SMFC coupled with constructed wetland, aquatic plant and iron-based reaction. Finally, we have summarized the drawback of SMFC and discuss the future development directions of applying SMFC for sediment bioremediation.


Bioelectric Energy Sources , Biodegradation, Environmental , Electrons , Plants , Water , Electrodes , Geologic Sediments
16.
Chemosphere ; 312(Pt 1): 137239, 2023 Jan.
Article En | MEDLINE | ID: mdl-36379431

Harmful algae blooms (HABs), caused by severe eutrophication and extreme weather, have spread all over the world, posing adverse effects on eco-environment and human health. Microcystis aeruginosa is the dominant harmful cyanobacterial species when HABs occur, and the toxic metabolites produced by it, microcystins, are even fatal to humans. Photocatalytic technology has received wide attention from researchers for its clean and energy-efficient features, while the basic mechanisms and modification methods of photocatalysts have also been widely reported. In recent years, photocatalytic technology has shown great promise in the inhibition of HABs. In this article, we systematically reviewed the progress in photocatalytic performance and algae removal efficiency, discuss the damage mechanisms of photocatalysts for algae removal, including physical damage and various oxidative stresses, and also explore the degradation rates and possible pathways of microcystins. It can be concluded that during the photocatalytic process, the cytoarchitectural integrity of algae cells was damaged, a variety of important protein and enzyme systems were disrupted, and the antioxidant systems collapsed due to the continuous attack of ROS, which adversely affected the normal physiological activities and growth, resulting in the inactivation of algae cells. Moreover, photocatalysts have a degrading effect on microcystins, thus reducing the adverse effects of HAB. Finally, a brief summary of future research priorities regarding the photocatalytic degradation of algae cells is presented. This study helps to enhance the understanding of the destruction mechanism of Microcystis aeruginosa during the photocatalytic process, and provides a reference for the photodegradation of HAB in water bodies.


Microcystis , Humans , Microcystis/metabolism , Microcystins/metabolism , Harmful Algal Bloom , Antioxidants/metabolism , Oxidative Stress
17.
J Hazard Mater ; 443(Pt A): 130148, 2023 Feb 05.
Article En | MEDLINE | ID: mdl-36265377

Biochar has been increasingly applied in constructed wetlands (CWs) to remediate heavy metal (HM)-polluted water. Nevertheless, only few studies have elucidated the enhanced mechanism and potential synergies related to the HM removal from biochar-based CWs (BC-CWs) for HMs removal. This study used cadmium (Cd) as the target HM and added biochar into CWs to monitor physicochemical parameters, plant' physiological responses, substrate accumulation, and microbial metabolites and taxa. In comparison with the biochar-free CW (as CWC), a maximum Cd2+ removal of 99.7% was achieved in the BC-CWs, associated with stable physicochemical parameters. Biochar preferentially adsorbed the available Cd2+ and significantly accumulated Fe/Mn oxides-bond and the exchangeable Cd fraction. Moreover, biochar alleviated the lipid peroxidation (decreased by 36.4%) of plants, resulting in improved growth. In addition, extracellular polymeric substances were increased by 376.9-396.8 mg/L in BC-CWs than compared to CWC, and N and C cycling was enhanced through interspecific positive connectivity. In summary, this study explored comprehensively the performance and mechanism of BC-CWs in the treatment of Cd2+-polluted water, suggesting a promising approach to promote the plant-microbe-substrate synergies under HM toxicity.


Metals, Heavy , Wetlands , Cadmium , Charcoal/chemistry , Metals, Heavy/analysis , Water , Wastewater , Waste Disposal, Fluid , Nitrogen/metabolism
18.
J Environ Sci (China) ; 125: 160-170, 2023 Mar.
Article En | MEDLINE | ID: mdl-36375902

Simultaneous anammox and denitrification (SAD) is an efficient approach to treat wastewater having a low C/N ratio; however, few studies have investigated a combination of SAD and partial nitritation (PN). In this study, a lab-scale up-flow blanket filter (UBF) and zeolite sequence batch reactor (ZSBR) were continuously operated to implement SAD and PN advantages, respectively. The UBF achieved a high total nitrogen (TN) removal efficiency of over 70% during the start-up stage (days 1-50), and reached a TN removal efficiency of 96% in the following 90 days (days 51-140) at COD/NH4+-N ratio of 2.5. The absolute abundance of anammox bateria increased to the highest value of 1.58 × 107 copies/µL DNA; Comamonadaceae was predominant in the UBF at the optimal ratio. Meanwhile, ZSBR was initiated on day 115 as fast nitritation process to satisfy the influent requirement for the UBF. The combined process was started on day 140 and then lasted for 30 days, during the combined process, between the two reactors, the UBF was the main contributor for TN (66.5% ± 4.5%) and COD (71.8% ± 4.9%) removal. These results demonstrated that strong SAD occurred in the UBF when following a ZSBR with in-situ NOB elimination. This research presents insights into a novel biological nitrogen removal process for low C/N ratio wastewater treatment.


Nitrogen , Zeolites , Denitrification , Bioreactors , Anaerobic Ammonia Oxidation , Oxidation-Reduction , Wastewater , Sewage
19.
Exp Mol Med ; 54(11): 2060-2076, 2022 11.
Article En | MEDLINE | ID: mdl-36434043

The cell ecology and spatial niche implicated in the dynamic and sequential process of lung adenocarcinoma (LUAD) from adenocarcinoma in situ (AIS) to minimally invasive adenocarcinoma (MIA) and subsequent invasive adenocarcinoma (IAC) have not yet been elucidated. Here, we performed an integrative analysis of single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) to characterize the cell atlas of the invasion trajectory of LUAD. We found that the UBE2C + cancer cell subpopulation constantly increased during the invasive process of LUAD with remarkable elevation in IAC, and its spatial distribution was in the peripheral cancer region of the IAC, representing a more malignant phenotype. Furthermore, analysis of the TME cell type subpopulation showed a constant decrease in mast cells, monocytes, and lymphatic endothelial cells, which were implicated in the whole process of invasive LUAD, accompanied by an increase in NK cells and MALT B cells from AIS to MIA and an increase in Tregs and secretory B cells from MIA to IAC. Notably, for AIS, cancer cells, NK cells, and mast cells were colocalized in the cancer region; however, for IAC, Tregs colocalized with cancer cells. Finally, communication and interaction between cancer cells and TME cell-induced constitutive activation of TGF-ß signaling were involved in the invasion of IAC. Therefore, our results reveal the specific cellular information and spatial architecture of cancer cells and TME subpopulations, as well as the cellular interaction between them, which will facilitate the identification and development of precision medicine in the invasive process of LUAD from AIS to IAC.


Adenocarcinoma in Situ , Adenocarcinoma of Lung , Adenocarcinoma , Lung Neoplasms , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Transcriptome , Endothelial Cells/pathology , Neoplasm Invasiveness , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma in Situ/pathology , Adenocarcinoma/pathology , Sequence Analysis, RNA
20.
Environ Res ; 215(Pt 1): 114216, 2022 12.
Article En | MEDLINE | ID: mdl-36057334

In this work, a floating photocatalyst was constructed by loading g-C3N4@Bi2MoO6@AgI (GBA) nanocomposite on a modified polyurethane sponge via a simple dip-coating method and applied for the inactivation of Microcystis aeruginosa under visible light. GBA ternary photocatalyst was fabricated successfully and the morphology, structure, chemical state, and optical properties were characterized systematically. The floating catalyst achieved near 100% removal efficiency of algae cells under 6 h visible light irradiation and also could be retrieved and used at least three times repeatedly. The influences of various conditions on photocatalytic performance such as loading content of nanoparticles, algae density, and concentration of natural organic matters were also studied, which revealed that the GBA floating catalyst exhibited excellent photocatalytic performance of algae removal under different conditions. Furthermore, the physiological characteristics of algae cells during the photocatalytic process, including cell morphology, membrane permeability, Zeta potential, photosynthetic system, antioxidant system, and the metabolic activity were investigated. Results confirmed that the algae cells were severely damaged during the photocatalytic inactivation and the normal physiological functions were significantly affected, which resulted in the death of algae cells at last. Finally, a possible photocatalytic inactivation mechanism of algae cells was proposed. In summary, GBA floating catalyst can effectively inactivate Microcystis aeruginosa under visible light, which confirmed the high efficiency of the novel photocatalytic algae removal technology. Meanwhile, the recyclable floating material also makes the practical application in eutrophic waters of the algae removal technology possible.


Microcystis , Antioxidants , Bismuth , Catalysis , Light , Microcystis/chemistry , Molybdenum , Polyurethanes
...